Extensions 1→N→G→Q→1 with N=C2 and Q=C23.11D6

Direct product G=N×Q with N=C2 and Q=C23.11D6
dρLabelID
C2×C23.11D696C2xC2^3.11D6192,1050


Non-split extensions G=N.Q with N=C2 and Q=C23.11D6
extensionφ:Q→Aut NdρLabelID
C2.1(C23.11D6) = (C2×C12)⋊Q8central extension (φ=1)192C2.1(C2^3.11D6)192,205
C2.2(C23.11D6) = C3⋊(C428C4)central extension (φ=1)192C2.2(C2^3.11D6)192,209
C2.3(C23.11D6) = D6⋊C45C4central extension (φ=1)96C2.3(C2^3.11D6)192,228
C2.4(C23.11D6) = D6⋊C43C4central extension (φ=1)96C2.4(C2^3.11D6)192,229
C2.5(C23.11D6) = C24.14D6central extension (φ=1)96C2.5(C2^3.11D6)192,503
C2.6(C23.11D6) = C24.19D6central extension (φ=1)96C2.6(C2^3.11D6)192,510
C2.7(C23.11D6) = C24.24D6central extension (φ=1)96C2.7(C2^3.11D6)192,516
C2.8(C23.11D6) = (C2×Dic3).9D4central stem extension (φ=1)192C2.8(C2^3.11D6)192,217
C2.9(C23.11D6) = (C2×C4).Dic6central stem extension (φ=1)192C2.9(C2^3.11D6)192,219
C2.10(C23.11D6) = (C22×S3)⋊Q8central stem extension (φ=1)96C2.10(C2^3.11D6)192,232
C2.11(C23.11D6) = C6.(C4⋊D4)central stem extension (φ=1)96C2.11(C2^3.11D6)192,234
C2.12(C23.11D6) = Dic3.SD16central stem extension (φ=1)96C2.12(C2^3.11D6)192,319
C2.13(C23.11D6) = C4⋊C4.D6central stem extension (φ=1)96C2.13(C2^3.11D6)192,323
C2.14(C23.11D6) = C12⋊Q8⋊C2central stem extension (φ=1)96C2.14(C2^3.11D6)192,324
C2.15(C23.11D6) = (C2×C8).200D6central stem extension (φ=1)96C2.15(C2^3.11D6)192,327
C2.16(C23.11D6) = Dic3.1Q16central stem extension (φ=1)192C2.16(C2^3.11D6)192,351
C2.17(C23.11D6) = (C2×C8).D6central stem extension (φ=1)96C2.17(C2^3.11D6)192,353
C2.18(C23.11D6) = (C2×Q8).36D6central stem extension (φ=1)192C2.18(C2^3.11D6)192,356
C2.19(C23.11D6) = Q8⋊C4⋊S3central stem extension (φ=1)96C2.19(C2^3.11D6)192,359
C2.20(C23.11D6) = C232Dic6central stem extension (φ=1)96C2.20(C2^3.11D6)192,506
C2.21(C23.11D6) = C24.20D6central stem extension (φ=1)96C2.21(C2^3.11D6)192,511
C2.22(C23.11D6) = C24.25D6central stem extension (φ=1)96C2.22(C2^3.11D6)192,518
C2.23(C23.11D6) = C24.27D6central stem extension (φ=1)96C2.23(C2^3.11D6)192,520

׿
×
𝔽